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Benefit to the Program

Program goals being addressed.

Develop technologies to demonstrate that 99 percent of
Injected CO, remains in the injection zones.

Project benefits statement.

The Engineered Biomineralized Sealing Technologies
project supports Storage Program goals by developing a
leakage mitigation technology for small aperture leaks
that can be delivered via low viscosity solutions.



Project Overview:
Goals and Objectives

The goal of this project is to develop a biomineralization-
based technology for sealing preferential flow pathways in
the vicinity of injection wells.

Objective 1) Construct and test mesoscale high pressure rock test
system (HPRTS).

Objective 2) Develop biomineralization seal experimental protocol.
Objective 3) Creation of biomineralization seal in different rock
types and simulating different field conditions.

Target metrics for technology performance.

1) Demonstrate the ability to control the spatial distribution of the
biobarrier on the 1 meter scale.

2) Achieve a 3-4 order of magnitude reduction in permeability and a
10 to 25 fold increase in capillary entry pressure.

3) Develop a barrier growth protocol consistent with field
deployment 4
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How Can We Plug Small Aperture Leaks?
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Cement is a good technology for large aperture leaks, but is too viscous
to plug small aperture leaks such as small fractures or interfacial
delaminations

In some problematic cases it may be desirable to plug the rock
formation around the well.

A missing tool is a plugging technology that can be delivered via low- M
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How Can We Plug Small Aperture Leaks?

Approach

Deliver materials separately in low-viscosity aqueous
solutions and grow the barrier in place
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M Biomineralizing Biofilms
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Engineered Applications of Ureolytic Biomineralization
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Figure 1. Several potential (but not limited to)
engineering applications for ureolysis-driven MICP.
Note: in this figure the white crystal hatch pattern
represents calcium carbonate a) strengthening
earthen dams or consolidating porous materials, b)
application to soils to prevent dust ¢) remediating
concrete fractures d) coating PCB-oil contaminated
concrete resulting from leaky transformers e)treating
or coating limestone or concrete to reduce risk of
corrosive fluid infiltration f)creating ponds or
reservoirs by sealing porous materials g) forming
subsurface barriers to prevent unwanted fluids like
salt water intrusion or contaminated groundwaters
into drinking water aquifers h) remediating
subsurface groundwater contaminated with
radionuclides or heavy metals(represented by
triangles) with co-precipitation of CaCOs i) treating
fractures in cap rock to mitigate leakage from
geologically sequestered carbon dioxide injection
sites or coating well bore concrete to provide a
sacrificial coating to prevent concrete degradation

from supercritical CO.,.
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Research Challenges

To move this technology forward it must be demonstrated that:

 Mineral deposits can be formed at a field relevant scale under
environmental conditions appropriate to subsurface reservoirs

 Mineral deposition can be kept uniform over relevant distances
(meter scale)

« The degree of sealing in disturbed rock, cement, and cement-well
bore interface reaches an acceptable level

« Biomineral deposits are stable when exposed to brine/ScCO,
 Ureolytic organisms can be isolated from the field

 Acceptable field injection protocols can be developed
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High Pressure Biofilm Growth and
Biomineralization Test System
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MITCHELL, A.C.; PHILLIPS, A.J.; HIEBERT, R.; GERLACH, R.; SPANGLER, L.; CUNNINGHAM, A.B. (2009): Biofilm
enhanced geologic sequestration of supercritical CO,. The International Journal on Greenhouse Gas
Control. 3:90-99. d0i:10.1016/j.ijggc.2008.05.002
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Rock Core after Biofilm Growth & ScCO, Challenge
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Rock Core after Biofilm Growth & ScCO,
Challenge — SEM Images & Summary
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Biofilm growth and permeability
reduction at high pressure
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MITCHELL, A.C.; PHILLIPS, A.J.; HIEBERT, R.; GERLACH, R.; SPANGLER, L.; CUNNINGHAM, A.B. (2009): Biofilm
enhanced geologic sequestration of supercritical CO,. The International Journal on Greenhouse Gas
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Ureolysis driven carbonate precipitation

+ pH and alkalinity (increase in OH- and HCOy)
increase SATURATION STATE OF CALCITE

CO(NH,), + H,0 > NH,COOH + NH,
NH,COOH + H,0 = NH, + H,CO,

CO(NH,), + 2 H,0 > 2 NH, + H,CO,  (Urea hydrolysis)
2NH, + 2H,0 €-> 2NH,* + 20H-  (pH increase)
H,CO, + 20H" € HCO, + H,0 + OH" € CO.2 + 2 H,0

CO;% + Ca?* € CaCO, (carbonate precipitation)

cBz4s

Mitchell, AC and Ferris, FG (2006)

()  Permeability reduction ;Szeg)microbiology Journal , 23, 213-

(i)  Co-precipitation of metals Mitchell, AC and Ferris, FG (2006)

) ) ) Environmental Science and
(i)  Mineralization of CO, Technology, 40, 1008-1014.

Mitchell, AC and Ferris FG (2005)
Geochimica et Cosmochimica Acta, 69,

4199-4210.
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Ureolysis-Driven CaCO; Formation at High Pressure
under Pulse-Flow Conditions
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Ureolysis-driven CaCO; formation

Schultz, Pitts, Mitchell,
Cunningham, Gerlach
submitted to Microscopy Today
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CaCO,/Biofilm Deposits Resist Dissolution

Before exposure After exposure
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Modeling of Biofilm-ScCO, Interactions
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Ebigbo, Helmig, Cunningham, Class, Gerlach (2010) Advances in Water
Resources, doi:10.1016/j.advwatres.2010.04.004
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‘Biomineralization along a 2-foot sand column
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Biofilm Induced Calcium Carbonate Precipitation
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Mesoscale Biomineralization Research
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Figure 1a. Sandstone core (30-inch diameter) being extracted in Alabama. Figure 1b. Sandstone core
undergoing hydraulic testing in the MSU laboratory.
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Hydraulic testing of the 71.1 cm (28-inch) diameter Bremen core
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Permeability (md)
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Before Images

Region of fracture

The core was
hydraulically
fractured under
ambient
conditions right
before loading
into the vessel.
Distinct flow
channels were
formed.
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During Images
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Accomplishments to Date

Demonstrated ability to control mineralization
distribution

Developed computational tool to simulate
mineral distribution

Successful collection of large diameter core

Demonstrated ability to mineralize small
aperture fracture under ambient pressure

Designed and constructed high pressure vessel
for large diameter core experiments

Performed first high pressure sealing experiment
on large diameter core 35



Summary

 Biofilm formation and biomineralization
shows promise as a method to seal small
aperture leaks in the subsurface

« Other mineralogy, porosity, permeabillity
cores will be run

* Thought must be given to downhole
delivery of fluids for sealing technology

36
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Organization Chart

Energy Research Institute
Director Lee Spangler

PI: Al Cunningham

Co Investigator: Richard Esposito
Southern Company

l Co Investigator: Robin Gerlach |

I Rock Sample Acquisition I

Co Investigator: Peter \Walsh
University of Alabama atBirmingham

Biomineralization Modeling
Experiments

High Pressure Test
System Construction

Collaborators: AndreasBusch, Claus Otto
Shell International Exploration & Production B.V.
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I Communications
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Gantt Chart

Task

Description

Q1

Project Management & Planning

|2 | a3 | a4 |as|a6|a7|as|a9|ate|ai1]a12

<€

>

<€

2 |Construction of high pressure rock testing systems (HPRTS) )

2.1 |Design and fabricate HPRTS system - : - :

. € >

2.2 |Initial testing of HPRTS

. | N

2.3 |Charactering the initial flow properties of rock samples - : - : i

3 |Develop biomineralization seal experimental protocol E ; a :

! | — > -

3.1 |Radial Flow : : ; : : ;

«<—F>

3.2 |Axial (Linear) Flow : : ;

: S i «—> o

3.3 |Assessment of effectiveness of biomineralization seal : : i
Creation of biomineralization seal in different rock types < i i >

4 |simulating different field conditions i :
< —

4.1 |Additional Experiments

4.2 |5cCO2 challenges of mineralized rock ; ; ;
5 |Experimental Simulation Modeling of Processes < )
5.1 |Pre-experimental modeling <€ : >
= =

5.2 |Post-experimental modeling ;
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